public static final class DescriptorProtos.SourceCodeInfo.Builder extends com.google.protobuf.GeneratedMessage.Builder<DescriptorProtos.SourceCodeInfo.Builder> implements DescriptorProtos.SourceCodeInfoOrBuilder
google.protobuf.SourceCodeInfo
Encapsulates information about the original source file from which a FileDescriptorProto was generated.
| Modifier and Type | Method and Description |
|---|---|
DescriptorProtos.SourceCodeInfo.Builder |
addAllLocation(java.lang.Iterable<? extends DescriptorProtos.SourceCodeInfo.Location> values)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.Builder |
addLocation(DescriptorProtos.SourceCodeInfo.Location.Builder builderForValue)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.Builder |
addLocation(DescriptorProtos.SourceCodeInfo.Location value)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.Builder |
addLocation(int index,
DescriptorProtos.SourceCodeInfo.Location.Builder builderForValue)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.Builder |
addLocation(int index,
DescriptorProtos.SourceCodeInfo.Location value)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.Location.Builder |
addLocationBuilder()
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.Location.Builder |
addLocationBuilder(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo |
build() |
DescriptorProtos.SourceCodeInfo |
buildPartial() |
DescriptorProtos.SourceCodeInfo.Builder |
clear() |
DescriptorProtos.SourceCodeInfo.Builder |
clearLocation()
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.Builder |
clone() |
DescriptorProtos.SourceCodeInfo |
getDefaultInstanceForType() |
static com.google.protobuf.Descriptors.Descriptor |
getDescriptor() |
com.google.protobuf.Descriptors.Descriptor |
getDescriptorForType() |
DescriptorProtos.SourceCodeInfo.Location |
getLocation(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.Location.Builder |
getLocationBuilder(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
java.util.List<DescriptorProtos.SourceCodeInfo.Location.Builder> |
getLocationBuilderList()
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
int |
getLocationCount()
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
java.util.List<DescriptorProtos.SourceCodeInfo.Location> |
getLocationList()
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.LocationOrBuilder |
getLocationOrBuilder(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
java.util.List<? extends DescriptorProtos.SourceCodeInfo.LocationOrBuilder> |
getLocationOrBuilderList()
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
protected com.google.protobuf.GeneratedMessage.FieldAccessorTable |
internalGetFieldAccessorTable() |
boolean |
isInitialized() |
DescriptorProtos.SourceCodeInfo.Builder |
mergeFrom(com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
DescriptorProtos.SourceCodeInfo.Builder |
mergeFrom(DescriptorProtos.SourceCodeInfo other) |
DescriptorProtos.SourceCodeInfo.Builder |
mergeFrom(com.google.protobuf.Message other) |
DescriptorProtos.SourceCodeInfo.Builder |
removeLocation(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.Builder |
setLocation(int index,
DescriptorProtos.SourceCodeInfo.Location.Builder builderForValue)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
DescriptorProtos.SourceCodeInfo.Builder |
setLocation(int index,
DescriptorProtos.SourceCodeInfo.Location value)
repeated .google.protobuf.SourceCodeInfo.Location location = 1; |
addRepeatedField, clearField, clearOneof, getAllFields, getField, getFieldBuilder, getOneofFieldDescriptor, getParentForChildren, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof, isClean, markClean, mergeUnknownFields, newBuilderForField, onBuilt, onChanged, parseUnknownField, setField, setRepeatedField, setUnknownFieldsfindInitializationErrors, getInitializationErrorString, mergeDelimitedFrom, mergeDelimitedFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, newUninitializedMessageException, toStringaddAll, newUninitializedMessageExceptionpublic static final com.google.protobuf.Descriptors.Descriptor getDescriptor()
protected com.google.protobuf.GeneratedMessage.FieldAccessorTable internalGetFieldAccessorTable()
internalGetFieldAccessorTable in class com.google.protobuf.GeneratedMessage.Builder<DescriptorProtos.SourceCodeInfo.Builder>public DescriptorProtos.SourceCodeInfo.Builder clear()
clear in interface com.google.protobuf.Message.Builderclear in interface com.google.protobuf.MessageLite.Builderclear in class com.google.protobuf.GeneratedMessage.Builder<DescriptorProtos.SourceCodeInfo.Builder>public DescriptorProtos.SourceCodeInfo.Builder clone()
clone in interface com.google.protobuf.Message.Builderclone in interface com.google.protobuf.MessageLite.Builderclone in class com.google.protobuf.GeneratedMessage.Builder<DescriptorProtos.SourceCodeInfo.Builder>public com.google.protobuf.Descriptors.Descriptor getDescriptorForType()
getDescriptorForType in interface com.google.protobuf.Message.BuildergetDescriptorForType in interface com.google.protobuf.MessageOrBuildergetDescriptorForType in class com.google.protobuf.GeneratedMessage.Builder<DescriptorProtos.SourceCodeInfo.Builder>public DescriptorProtos.SourceCodeInfo getDefaultInstanceForType()
getDefaultInstanceForType in interface com.google.protobuf.MessageLiteOrBuildergetDefaultInstanceForType in interface com.google.protobuf.MessageOrBuilderpublic DescriptorProtos.SourceCodeInfo build()
build in interface com.google.protobuf.Message.Builderbuild in interface com.google.protobuf.MessageLite.Builderpublic DescriptorProtos.SourceCodeInfo buildPartial()
buildPartial in interface com.google.protobuf.Message.BuilderbuildPartial in interface com.google.protobuf.MessageLite.Builderpublic DescriptorProtos.SourceCodeInfo.Builder mergeFrom(com.google.protobuf.Message other)
mergeFrom in interface com.google.protobuf.Message.BuildermergeFrom in class com.google.protobuf.AbstractMessage.Builder<DescriptorProtos.SourceCodeInfo.Builder>public DescriptorProtos.SourceCodeInfo.Builder mergeFrom(DescriptorProtos.SourceCodeInfo other)
public final boolean isInitialized()
isInitialized in interface com.google.protobuf.MessageLiteOrBuilderisInitialized in class com.google.protobuf.GeneratedMessage.Builder<DescriptorProtos.SourceCodeInfo.Builder>public DescriptorProtos.SourceCodeInfo.Builder mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException
mergeFrom in interface com.google.protobuf.Message.BuildermergeFrom in interface com.google.protobuf.MessageLite.BuildermergeFrom in class com.google.protobuf.AbstractMessage.Builder<DescriptorProtos.SourceCodeInfo.Builder>java.io.IOExceptionpublic java.util.List<DescriptorProtos.SourceCodeInfo.Location> getLocationList()
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which
corresponds to a particular definition. This information is intended
to be useful to IDEs, code indexers, documentation generators, and similar
tools.
For example, say we have a file like:
message Foo {
optional string foo = 1;
}
Let's look at just the field definition:
optional string foo = 1;
^ ^^ ^^ ^ ^^^
a bc de f ghi
We have the following locations:
span path represents
[a,i) [ 4, 0, 2, 0 ] The whole field definition.
[a,b) [ 4, 0, 2, 0, 4 ] The label (optional).
[c,d) [ 4, 0, 2, 0, 5 ] The type (string).
[e,f) [ 4, 0, 2, 0, 1 ] The name (foo).
[g,h) [ 4, 0, 2, 0, 3 ] The number (1).
Notes:
- A location may refer to a repeated field itself (i.e. not to any
particular index within it). This is used whenever a set of elements are
logically enclosed in a single code segment. For example, an entire
extend block (possibly containing multiple extension definitions) will
have an outer location whose path refers to the "extensions" repeated
field without an index.
- Multiple locations may have the same path. This happens when a single
logical declaration is spread out across multiple places. The most
obvious example is the "extend" block again -- there may be multiple
extend blocks in the same scope, each of which will have the same path.
- A location's span is not always a subset of its parent's span. For
example, the "extendee" of an extension declaration appears at the
beginning of the "extend" block and is shared by all extensions within
the block.
- Just because a location's span is a subset of some other location's span
does not mean that it is a descendent. For example, a "group" defines
both a type and a field in a single declaration. Thus, the locations
corresponding to the type and field and their components will overlap.
- Code which tries to interpret locations should probably be designed to
ignore those that it doesn't understand, as more types of locations could
be recorded in the future.
getLocationList in interface DescriptorProtos.SourceCodeInfoOrBuilderpublic int getLocationCount()
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which
corresponds to a particular definition. This information is intended
to be useful to IDEs, code indexers, documentation generators, and similar
tools.
For example, say we have a file like:
message Foo {
optional string foo = 1;
}
Let's look at just the field definition:
optional string foo = 1;
^ ^^ ^^ ^ ^^^
a bc de f ghi
We have the following locations:
span path represents
[a,i) [ 4, 0, 2, 0 ] The whole field definition.
[a,b) [ 4, 0, 2, 0, 4 ] The label (optional).
[c,d) [ 4, 0, 2, 0, 5 ] The type (string).
[e,f) [ 4, 0, 2, 0, 1 ] The name (foo).
[g,h) [ 4, 0, 2, 0, 3 ] The number (1).
Notes:
- A location may refer to a repeated field itself (i.e. not to any
particular index within it). This is used whenever a set of elements are
logically enclosed in a single code segment. For example, an entire
extend block (possibly containing multiple extension definitions) will
have an outer location whose path refers to the "extensions" repeated
field without an index.
- Multiple locations may have the same path. This happens when a single
logical declaration is spread out across multiple places. The most
obvious example is the "extend" block again -- there may be multiple
extend blocks in the same scope, each of which will have the same path.
- A location's span is not always a subset of its parent's span. For
example, the "extendee" of an extension declaration appears at the
beginning of the "extend" block and is shared by all extensions within
the block.
- Just because a location's span is a subset of some other location's span
does not mean that it is a descendent. For example, a "group" defines
both a type and a field in a single declaration. Thus, the locations
corresponding to the type and field and their components will overlap.
- Code which tries to interpret locations should probably be designed to
ignore those that it doesn't understand, as more types of locations could
be recorded in the future.
getLocationCount in interface DescriptorProtos.SourceCodeInfoOrBuilderpublic DescriptorProtos.SourceCodeInfo.Location getLocation(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which
corresponds to a particular definition. This information is intended
to be useful to IDEs, code indexers, documentation generators, and similar
tools.
For example, say we have a file like:
message Foo {
optional string foo = 1;
}
Let's look at just the field definition:
optional string foo = 1;
^ ^^ ^^ ^ ^^^
a bc de f ghi
We have the following locations:
span path represents
[a,i) [ 4, 0, 2, 0 ] The whole field definition.
[a,b) [ 4, 0, 2, 0, 4 ] The label (optional).
[c,d) [ 4, 0, 2, 0, 5 ] The type (string).
[e,f) [ 4, 0, 2, 0, 1 ] The name (foo).
[g,h) [ 4, 0, 2, 0, 3 ] The number (1).
Notes:
- A location may refer to a repeated field itself (i.e. not to any
particular index within it). This is used whenever a set of elements are
logically enclosed in a single code segment. For example, an entire
extend block (possibly containing multiple extension definitions) will
have an outer location whose path refers to the "extensions" repeated
field without an index.
- Multiple locations may have the same path. This happens when a single
logical declaration is spread out across multiple places. The most
obvious example is the "extend" block again -- there may be multiple
extend blocks in the same scope, each of which will have the same path.
- A location's span is not always a subset of its parent's span. For
example, the "extendee" of an extension declaration appears at the
beginning of the "extend" block and is shared by all extensions within
the block.
- Just because a location's span is a subset of some other location's span
does not mean that it is a descendent. For example, a "group" defines
both a type and a field in a single declaration. Thus, the locations
corresponding to the type and field and their components will overlap.
- Code which tries to interpret locations should probably be designed to
ignore those that it doesn't understand, as more types of locations could
be recorded in the future.
getLocation in interface DescriptorProtos.SourceCodeInfoOrBuilderpublic DescriptorProtos.SourceCodeInfo.Builder setLocation(int index, DescriptorProtos.SourceCodeInfo.Location value)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which
corresponds to a particular definition. This information is intended
to be useful to IDEs, code indexers, documentation generators, and similar
tools.
For example, say we have a file like:
message Foo {
optional string foo = 1;
}
Let's look at just the field definition:
optional string foo = 1;
^ ^^ ^^ ^ ^^^
a bc de f ghi
We have the following locations:
span path represents
[a,i) [ 4, 0, 2, 0 ] The whole field definition.
[a,b) [ 4, 0, 2, 0, 4 ] The label (optional).
[c,d) [ 4, 0, 2, 0, 5 ] The type (string).
[e,f) [ 4, 0, 2, 0, 1 ] The name (foo).
[g,h) [ 4, 0, 2, 0, 3 ] The number (1).
Notes:
- A location may refer to a repeated field itself (i.e. not to any
particular index within it). This is used whenever a set of elements are
logically enclosed in a single code segment. For example, an entire
extend block (possibly containing multiple extension definitions) will
have an outer location whose path refers to the "extensions" repeated
field without an index.
- Multiple locations may have the same path. This happens when a single
logical declaration is spread out across multiple places. The most
obvious example is the "extend" block again -- there may be multiple
extend blocks in the same scope, each of which will have the same path.
- A location's span is not always a subset of its parent's span. For
example, the "extendee" of an extension declaration appears at the
beginning of the "extend" block and is shared by all extensions within
the block.
- Just because a location's span is a subset of some other location's span
does not mean that it is a descendent. For example, a "group" defines
both a type and a field in a single declaration. Thus, the locations
corresponding to the type and field and their components will overlap.
- Code which tries to interpret locations should probably be designed to
ignore those that it doesn't understand, as more types of locations could
be recorded in the future.
public DescriptorProtos.SourceCodeInfo.Builder setLocation(int index, DescriptorProtos.SourceCodeInfo.Location.Builder builderForValue)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which
corresponds to a particular definition. This information is intended
to be useful to IDEs, code indexers, documentation generators, and similar
tools.
For example, say we have a file like:
message Foo {
optional string foo = 1;
}
Let's look at just the field definition:
optional string foo = 1;
^ ^^ ^^ ^ ^^^
a bc de f ghi
We have the following locations:
span path represents
[a,i) [ 4, 0, 2, 0 ] The whole field definition.
[a,b) [ 4, 0, 2, 0, 4 ] The label (optional).
[c,d) [ 4, 0, 2, 0, 5 ] The type (string).
[e,f) [ 4, 0, 2, 0, 1 ] The name (foo).
[g,h) [ 4, 0, 2, 0, 3 ] The number (1).
Notes:
- A location may refer to a repeated field itself (i.e. not to any
particular index within it). This is used whenever a set of elements are
logically enclosed in a single code segment. For example, an entire
extend block (possibly containing multiple extension definitions) will
have an outer location whose path refers to the "extensions" repeated
field without an index.
- Multiple locations may have the same path. This happens when a single
logical declaration is spread out across multiple places. The most
obvious example is the "extend" block again -- there may be multiple
extend blocks in the same scope, each of which will have the same path.
- A location's span is not always a subset of its parent's span. For
example, the "extendee" of an extension declaration appears at the
beginning of the "extend" block and is shared by all extensions within
the block.
- Just because a location's span is a subset of some other location's span
does not mean that it is a descendent. For example, a "group" defines
both a type and a field in a single declaration. Thus, the locations
corresponding to the type and field and their components will overlap.
- Code which tries to interpret locations should probably be designed to
ignore those that it doesn't understand, as more types of locations could
be recorded in the future.
public DescriptorProtos.SourceCodeInfo.Builder addLocation(DescriptorProtos.SourceCodeInfo.Location value)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which
corresponds to a particular definition. This information is intended
to be useful to IDEs, code indexers, documentation generators, and similar
tools.
For example, say we have a file like:
message Foo {
optional string foo = 1;
}
Let's look at just the field definition:
optional string foo = 1;
^ ^^ ^^ ^ ^^^
a bc de f ghi
We have the following locations:
span path represents
[a,i) [ 4, 0, 2, 0 ] The whole field definition.
[a,b) [ 4, 0, 2, 0, 4 ] The label (optional).
[c,d) [ 4, 0, 2, 0, 5 ] The type (string).
[e,f) [ 4, 0, 2, 0, 1 ] The name (foo).
[g,h) [ 4, 0, 2, 0, 3 ] The number (1).
Notes:
- A location may refer to a repeated field itself (i.e. not to any
particular index within it). This is used whenever a set of elements are
logically enclosed in a single code segment. For example, an entire
extend block (possibly containing multiple extension definitions) will
have an outer location whose path refers to the "extensions" repeated
field without an index.
- Multiple locations may have the same path. This happens when a single
logical declaration is spread out across multiple places. The most
obvious example is the "extend" block again -- there may be multiple
extend blocks in the same scope, each of which will have the same path.
- A location's span is not always a subset of its parent's span. For
example, the "extendee" of an extension declaration appears at the
beginning of the "extend" block and is shared by all extensions within
the block.
- Just because a location's span is a subset of some other location's span
does not mean that it is a descendent. For example, a "group" defines
both a type and a field in a single declaration. Thus, the locations
corresponding to the type and field and their components will overlap.
- Code which tries to interpret locations should probably be designed to
ignore those that it doesn't understand, as more types of locations could
be recorded in the future.
public DescriptorProtos.SourceCodeInfo.Builder addLocation(int index, DescriptorProtos.SourceCodeInfo.Location value)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which
corresponds to a particular definition. This information is intended
to be useful to IDEs, code indexers, documentation generators, and similar
tools.
For example, say we have a file like:
message Foo {
optional string foo = 1;
}
Let's look at just the field definition:
optional string foo = 1;
^ ^^ ^^ ^ ^^^
a bc de f ghi
We have the following locations:
span path represents
[a,i) [ 4, 0, 2, 0 ] The whole field definition.
[a,b) [ 4, 0, 2, 0, 4 ] The label (optional).
[c,d) [ 4, 0, 2, 0, 5 ] The type (string).
[e,f) [ 4, 0, 2, 0, 1 ] The name (foo).
[g,h) [ 4, 0, 2, 0, 3 ] The number (1).
Notes:
- A location may refer to a repeated field itself (i.e. not to any
particular index within it). This is used whenever a set of elements are
logically enclosed in a single code segment. For example, an entire
extend block (possibly containing multiple extension definitions) will
have an outer location whose path refers to the "extensions" repeated
field without an index.
- Multiple locations may have the same path. This happens when a single
logical declaration is spread out across multiple places. The most
obvious example is the "extend" block again -- there may be multiple
extend blocks in the same scope, each of which will have the same path.
- A location's span is not always a subset of its parent's span. For
example, the "extendee" of an extension declaration appears at the
beginning of the "extend" block and is shared by all extensions within
the block.
- Just because a location's span is a subset of some other location's span
does not mean that it is a descendent. For example, a "group" defines
both a type and a field in a single declaration. Thus, the locations
corresponding to the type and field and their components will overlap.
- Code which tries to interpret locations should probably be designed to
ignore those that it doesn't understand, as more types of locations could
be recorded in the future.
public DescriptorProtos.SourceCodeInfo.Builder addLocation(DescriptorProtos.SourceCodeInfo.Location.Builder builderForValue)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which
corresponds to a particular definition. This information is intended
to be useful to IDEs, code indexers, documentation generators, and similar
tools.
For example, say we have a file like:
message Foo {
optional string foo = 1;
}
Let's look at just the field definition:
optional string foo = 1;
^ ^^ ^^ ^ ^^^
a bc de f ghi
We have the following locations:
span path represents
[a,i) [ 4, 0, 2, 0 ] The whole field definition.
[a,b) [ 4, 0, 2, 0, 4 ] The label (optional).
[c,d) [ 4, 0, 2, 0, 5 ] The type (string).
[e,f) [ 4, 0, 2, 0, 1 ] The name (foo).
[g,h) [ 4, 0, 2, 0, 3 ] The number (1).
Notes:
- A location may refer to a repeated field itself (i.e. not to any
particular index within it). This is used whenever a set of elements are
logically enclosed in a single code segment. For example, an entire
extend block (possibly containing multiple extension definitions) will
have an outer location whose path refers to the "extensions" repeated
field without an index.
- Multiple locations may have the same path. This happens when a single
logical declaration is spread out across multiple places. The most
obvious example is the "extend" block again -- there may be multiple
extend blocks in the same scope, each of which will have the same path.
- A location's span is not always a subset of its parent's span. For
example, the "extendee" of an extension declaration appears at the
beginning of the "extend" block and is shared by all extensions within
the block.
- Just because a location's span is a subset of some other location's span
does not mean that it is a descendent. For example, a "group" defines
both a type and a field in a single declaration. Thus, the locations
corresponding to the type and field and their components will overlap.
- Code which tries to interpret locations should probably be designed to
ignore those that it doesn't understand, as more types of locations could
be recorded in the future.
public DescriptorProtos.SourceCodeInfo.Builder addLocation(int index, DescriptorProtos.SourceCodeInfo.Location.Builder builderForValue)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which
corresponds to a particular definition. This information is intended
to be useful to IDEs, code indexers, documentation generators, and similar
tools.
For example, say we have a file like:
message Foo {
optional string foo = 1;
}
Let's look at just the field definition:
optional string foo = 1;
^ ^^ ^^ ^ ^^^
a bc de f ghi
We have the following locations:
span path represents
[a,i) [ 4, 0, 2, 0 ] The whole field definition.
[a,b) [ 4, 0, 2, 0, 4 ] The label (optional).
[c,d) [ 4, 0, 2, 0, 5 ] The type (string).
[e,f) [ 4, 0, 2, 0, 1 ] The name (foo).
[g,h) [ 4, 0, 2, 0, 3 ] The number (1).
Notes:
- A location may refer to a repeated field itself (i.e. not to any
particular index within it). This is used whenever a set of elements are
logically enclosed in a single code segment. For example, an entire
extend block (possibly containing multiple extension definitions) will
have an outer location whose path refers to the "extensions" repeated
field without an index.
- Multiple locations may have the same path. This happens when a single
logical declaration is spread out across multiple places. The most
obvious example is the "extend" block again -- there may be multiple
extend blocks in the same scope, each of which will have the same path.
- A location's span is not always a subset of its parent's span. For
example, the "extendee" of an extension declaration appears at the
beginning of the "extend" block and is shared by all extensions within
the block.
- Just because a location's span is a subset of some other location's span
does not mean that it is a descendent. For example, a "group" defines
both a type and a field in a single declaration. Thus, the locations
corresponding to the type and field and their components will overlap.
- Code which tries to interpret locations should probably be designed to
ignore those that it doesn't understand, as more types of locations could
be recorded in the future.
public DescriptorProtos.SourceCodeInfo.Builder addAllLocation(java.lang.Iterable<? extends DescriptorProtos.SourceCodeInfo.Location> values)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which
corresponds to a particular definition. This information is intended
to be useful to IDEs, code indexers, documentation generators, and similar
tools.
For example, say we have a file like:
message Foo {
optional string foo = 1;
}
Let's look at just the field definition:
optional string foo = 1;
^ ^^ ^^ ^ ^^^
a bc de f ghi
We have the following locations:
span path represents
[a,i) [ 4, 0, 2, 0 ] The whole field definition.
[a,b) [ 4, 0, 2, 0, 4 ] The label (optional).
[c,d) [ 4, 0, 2, 0, 5 ] The type (string).
[e,f) [ 4, 0, 2, 0, 1 ] The name (foo).
[g,h) [ 4, 0, 2, 0, 3 ] The number (1).
Notes:
- A location may refer to a repeated field itself (i.e. not to any
particular index within it). This is used whenever a set of elements are
logically enclosed in a single code segment. For example, an entire
extend block (possibly containing multiple extension definitions) will
have an outer location whose path refers to the "extensions" repeated
field without an index.
- Multiple locations may have the same path. This happens when a single
logical declaration is spread out across multiple places. The most
obvious example is the "extend" block again -- there may be multiple
extend blocks in the same scope, each of which will have the same path.
- A location's span is not always a subset of its parent's span. For
example, the "extendee" of an extension declaration appears at the
beginning of the "extend" block and is shared by all extensions within
the block.
- Just because a location's span is a subset of some other location's span
does not mean that it is a descendent. For example, a "group" defines
both a type and a field in a single declaration. Thus, the locations
corresponding to the type and field and their components will overlap.
- Code which tries to interpret locations should probably be designed to
ignore those that it doesn't understand, as more types of locations could
be recorded in the future.
public DescriptorProtos.SourceCodeInfo.Builder clearLocation()
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which
corresponds to a particular definition. This information is intended
to be useful to IDEs, code indexers, documentation generators, and similar
tools.
For example, say we have a file like:
message Foo {
optional string foo = 1;
}
Let's look at just the field definition:
optional string foo = 1;
^ ^^ ^^ ^ ^^^
a bc de f ghi
We have the following locations:
span path represents
[a,i) [ 4, 0, 2, 0 ] The whole field definition.
[a,b) [ 4, 0, 2, 0, 4 ] The label (optional).
[c,d) [ 4, 0, 2, 0, 5 ] The type (string).
[e,f) [ 4, 0, 2, 0, 1 ] The name (foo).
[g,h) [ 4, 0, 2, 0, 3 ] The number (1).
Notes:
- A location may refer to a repeated field itself (i.e. not to any
particular index within it). This is used whenever a set of elements are
logically enclosed in a single code segment. For example, an entire
extend block (possibly containing multiple extension definitions) will
have an outer location whose path refers to the "extensions" repeated
field without an index.
- Multiple locations may have the same path. This happens when a single
logical declaration is spread out across multiple places. The most
obvious example is the "extend" block again -- there may be multiple
extend blocks in the same scope, each of which will have the same path.
- A location's span is not always a subset of its parent's span. For
example, the "extendee" of an extension declaration appears at the
beginning of the "extend" block and is shared by all extensions within
the block.
- Just because a location's span is a subset of some other location's span
does not mean that it is a descendent. For example, a "group" defines
both a type and a field in a single declaration. Thus, the locations
corresponding to the type and field and their components will overlap.
- Code which tries to interpret locations should probably be designed to
ignore those that it doesn't understand, as more types of locations could
be recorded in the future.
public DescriptorProtos.SourceCodeInfo.Builder removeLocation(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which
corresponds to a particular definition. This information is intended
to be useful to IDEs, code indexers, documentation generators, and similar
tools.
For example, say we have a file like:
message Foo {
optional string foo = 1;
}
Let's look at just the field definition:
optional string foo = 1;
^ ^^ ^^ ^ ^^^
a bc de f ghi
We have the following locations:
span path represents
[a,i) [ 4, 0, 2, 0 ] The whole field definition.
[a,b) [ 4, 0, 2, 0, 4 ] The label (optional).
[c,d) [ 4, 0, 2, 0, 5 ] The type (string).
[e,f) [ 4, 0, 2, 0, 1 ] The name (foo).
[g,h) [ 4, 0, 2, 0, 3 ] The number (1).
Notes:
- A location may refer to a repeated field itself (i.e. not to any
particular index within it). This is used whenever a set of elements are
logically enclosed in a single code segment. For example, an entire
extend block (possibly containing multiple extension definitions) will
have an outer location whose path refers to the "extensions" repeated
field without an index.
- Multiple locations may have the same path. This happens when a single
logical declaration is spread out across multiple places. The most
obvious example is the "extend" block again -- there may be multiple
extend blocks in the same scope, each of which will have the same path.
- A location's span is not always a subset of its parent's span. For
example, the "extendee" of an extension declaration appears at the
beginning of the "extend" block and is shared by all extensions within
the block.
- Just because a location's span is a subset of some other location's span
does not mean that it is a descendent. For example, a "group" defines
both a type and a field in a single declaration. Thus, the locations
corresponding to the type and field and their components will overlap.
- Code which tries to interpret locations should probably be designed to
ignore those that it doesn't understand, as more types of locations could
be recorded in the future.
public DescriptorProtos.SourceCodeInfo.Location.Builder getLocationBuilder(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which
corresponds to a particular definition. This information is intended
to be useful to IDEs, code indexers, documentation generators, and similar
tools.
For example, say we have a file like:
message Foo {
optional string foo = 1;
}
Let's look at just the field definition:
optional string foo = 1;
^ ^^ ^^ ^ ^^^
a bc de f ghi
We have the following locations:
span path represents
[a,i) [ 4, 0, 2, 0 ] The whole field definition.
[a,b) [ 4, 0, 2, 0, 4 ] The label (optional).
[c,d) [ 4, 0, 2, 0, 5 ] The type (string).
[e,f) [ 4, 0, 2, 0, 1 ] The name (foo).
[g,h) [ 4, 0, 2, 0, 3 ] The number (1).
Notes:
- A location may refer to a repeated field itself (i.e. not to any
particular index within it). This is used whenever a set of elements are
logically enclosed in a single code segment. For example, an entire
extend block (possibly containing multiple extension definitions) will
have an outer location whose path refers to the "extensions" repeated
field without an index.
- Multiple locations may have the same path. This happens when a single
logical declaration is spread out across multiple places. The most
obvious example is the "extend" block again -- there may be multiple
extend blocks in the same scope, each of which will have the same path.
- A location's span is not always a subset of its parent's span. For
example, the "extendee" of an extension declaration appears at the
beginning of the "extend" block and is shared by all extensions within
the block.
- Just because a location's span is a subset of some other location's span
does not mean that it is a descendent. For example, a "group" defines
both a type and a field in a single declaration. Thus, the locations
corresponding to the type and field and their components will overlap.
- Code which tries to interpret locations should probably be designed to
ignore those that it doesn't understand, as more types of locations could
be recorded in the future.
public DescriptorProtos.SourceCodeInfo.LocationOrBuilder getLocationOrBuilder(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which
corresponds to a particular definition. This information is intended
to be useful to IDEs, code indexers, documentation generators, and similar
tools.
For example, say we have a file like:
message Foo {
optional string foo = 1;
}
Let's look at just the field definition:
optional string foo = 1;
^ ^^ ^^ ^ ^^^
a bc de f ghi
We have the following locations:
span path represents
[a,i) [ 4, 0, 2, 0 ] The whole field definition.
[a,b) [ 4, 0, 2, 0, 4 ] The label (optional).
[c,d) [ 4, 0, 2, 0, 5 ] The type (string).
[e,f) [ 4, 0, 2, 0, 1 ] The name (foo).
[g,h) [ 4, 0, 2, 0, 3 ] The number (1).
Notes:
- A location may refer to a repeated field itself (i.e. not to any
particular index within it). This is used whenever a set of elements are
logically enclosed in a single code segment. For example, an entire
extend block (possibly containing multiple extension definitions) will
have an outer location whose path refers to the "extensions" repeated
field without an index.
- Multiple locations may have the same path. This happens when a single
logical declaration is spread out across multiple places. The most
obvious example is the "extend" block again -- there may be multiple
extend blocks in the same scope, each of which will have the same path.
- A location's span is not always a subset of its parent's span. For
example, the "extendee" of an extension declaration appears at the
beginning of the "extend" block and is shared by all extensions within
the block.
- Just because a location's span is a subset of some other location's span
does not mean that it is a descendent. For example, a "group" defines
both a type and a field in a single declaration. Thus, the locations
corresponding to the type and field and their components will overlap.
- Code which tries to interpret locations should probably be designed to
ignore those that it doesn't understand, as more types of locations could
be recorded in the future.
getLocationOrBuilder in interface DescriptorProtos.SourceCodeInfoOrBuilderpublic java.util.List<? extends DescriptorProtos.SourceCodeInfo.LocationOrBuilder> getLocationOrBuilderList()
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which
corresponds to a particular definition. This information is intended
to be useful to IDEs, code indexers, documentation generators, and similar
tools.
For example, say we have a file like:
message Foo {
optional string foo = 1;
}
Let's look at just the field definition:
optional string foo = 1;
^ ^^ ^^ ^ ^^^
a bc de f ghi
We have the following locations:
span path represents
[a,i) [ 4, 0, 2, 0 ] The whole field definition.
[a,b) [ 4, 0, 2, 0, 4 ] The label (optional).
[c,d) [ 4, 0, 2, 0, 5 ] The type (string).
[e,f) [ 4, 0, 2, 0, 1 ] The name (foo).
[g,h) [ 4, 0, 2, 0, 3 ] The number (1).
Notes:
- A location may refer to a repeated field itself (i.e. not to any
particular index within it). This is used whenever a set of elements are
logically enclosed in a single code segment. For example, an entire
extend block (possibly containing multiple extension definitions) will
have an outer location whose path refers to the "extensions" repeated
field without an index.
- Multiple locations may have the same path. This happens when a single
logical declaration is spread out across multiple places. The most
obvious example is the "extend" block again -- there may be multiple
extend blocks in the same scope, each of which will have the same path.
- A location's span is not always a subset of its parent's span. For
example, the "extendee" of an extension declaration appears at the
beginning of the "extend" block and is shared by all extensions within
the block.
- Just because a location's span is a subset of some other location's span
does not mean that it is a descendent. For example, a "group" defines
both a type and a field in a single declaration. Thus, the locations
corresponding to the type and field and their components will overlap.
- Code which tries to interpret locations should probably be designed to
ignore those that it doesn't understand, as more types of locations could
be recorded in the future.
getLocationOrBuilderList in interface DescriptorProtos.SourceCodeInfoOrBuilderpublic DescriptorProtos.SourceCodeInfo.Location.Builder addLocationBuilder()
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which
corresponds to a particular definition. This information is intended
to be useful to IDEs, code indexers, documentation generators, and similar
tools.
For example, say we have a file like:
message Foo {
optional string foo = 1;
}
Let's look at just the field definition:
optional string foo = 1;
^ ^^ ^^ ^ ^^^
a bc de f ghi
We have the following locations:
span path represents
[a,i) [ 4, 0, 2, 0 ] The whole field definition.
[a,b) [ 4, 0, 2, 0, 4 ] The label (optional).
[c,d) [ 4, 0, 2, 0, 5 ] The type (string).
[e,f) [ 4, 0, 2, 0, 1 ] The name (foo).
[g,h) [ 4, 0, 2, 0, 3 ] The number (1).
Notes:
- A location may refer to a repeated field itself (i.e. not to any
particular index within it). This is used whenever a set of elements are
logically enclosed in a single code segment. For example, an entire
extend block (possibly containing multiple extension definitions) will
have an outer location whose path refers to the "extensions" repeated
field without an index.
- Multiple locations may have the same path. This happens when a single
logical declaration is spread out across multiple places. The most
obvious example is the "extend" block again -- there may be multiple
extend blocks in the same scope, each of which will have the same path.
- A location's span is not always a subset of its parent's span. For
example, the "extendee" of an extension declaration appears at the
beginning of the "extend" block and is shared by all extensions within
the block.
- Just because a location's span is a subset of some other location's span
does not mean that it is a descendent. For example, a "group" defines
both a type and a field in a single declaration. Thus, the locations
corresponding to the type and field and their components will overlap.
- Code which tries to interpret locations should probably be designed to
ignore those that it doesn't understand, as more types of locations could
be recorded in the future.
public DescriptorProtos.SourceCodeInfo.Location.Builder addLocationBuilder(int index)
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which
corresponds to a particular definition. This information is intended
to be useful to IDEs, code indexers, documentation generators, and similar
tools.
For example, say we have a file like:
message Foo {
optional string foo = 1;
}
Let's look at just the field definition:
optional string foo = 1;
^ ^^ ^^ ^ ^^^
a bc de f ghi
We have the following locations:
span path represents
[a,i) [ 4, 0, 2, 0 ] The whole field definition.
[a,b) [ 4, 0, 2, 0, 4 ] The label (optional).
[c,d) [ 4, 0, 2, 0, 5 ] The type (string).
[e,f) [ 4, 0, 2, 0, 1 ] The name (foo).
[g,h) [ 4, 0, 2, 0, 3 ] The number (1).
Notes:
- A location may refer to a repeated field itself (i.e. not to any
particular index within it). This is used whenever a set of elements are
logically enclosed in a single code segment. For example, an entire
extend block (possibly containing multiple extension definitions) will
have an outer location whose path refers to the "extensions" repeated
field without an index.
- Multiple locations may have the same path. This happens when a single
logical declaration is spread out across multiple places. The most
obvious example is the "extend" block again -- there may be multiple
extend blocks in the same scope, each of which will have the same path.
- A location's span is not always a subset of its parent's span. For
example, the "extendee" of an extension declaration appears at the
beginning of the "extend" block and is shared by all extensions within
the block.
- Just because a location's span is a subset of some other location's span
does not mean that it is a descendent. For example, a "group" defines
both a type and a field in a single declaration. Thus, the locations
corresponding to the type and field and their components will overlap.
- Code which tries to interpret locations should probably be designed to
ignore those that it doesn't understand, as more types of locations could
be recorded in the future.
public java.util.List<DescriptorProtos.SourceCodeInfo.Location.Builder> getLocationBuilderList()
repeated .google.protobuf.SourceCodeInfo.Location location = 1;
A Location identifies a piece of source code in a .proto file which
corresponds to a particular definition. This information is intended
to be useful to IDEs, code indexers, documentation generators, and similar
tools.
For example, say we have a file like:
message Foo {
optional string foo = 1;
}
Let's look at just the field definition:
optional string foo = 1;
^ ^^ ^^ ^ ^^^
a bc de f ghi
We have the following locations:
span path represents
[a,i) [ 4, 0, 2, 0 ] The whole field definition.
[a,b) [ 4, 0, 2, 0, 4 ] The label (optional).
[c,d) [ 4, 0, 2, 0, 5 ] The type (string).
[e,f) [ 4, 0, 2, 0, 1 ] The name (foo).
[g,h) [ 4, 0, 2, 0, 3 ] The number (1).
Notes:
- A location may refer to a repeated field itself (i.e. not to any
particular index within it). This is used whenever a set of elements are
logically enclosed in a single code segment. For example, an entire
extend block (possibly containing multiple extension definitions) will
have an outer location whose path refers to the "extensions" repeated
field without an index.
- Multiple locations may have the same path. This happens when a single
logical declaration is spread out across multiple places. The most
obvious example is the "extend" block again -- there may be multiple
extend blocks in the same scope, each of which will have the same path.
- A location's span is not always a subset of its parent's span. For
example, the "extendee" of an extension declaration appears at the
beginning of the "extend" block and is shared by all extensions within
the block.
- Just because a location's span is a subset of some other location's span
does not mean that it is a descendent. For example, a "group" defines
both a type and a field in a single declaration. Thus, the locations
corresponding to the type and field and their components will overlap.
- Code which tries to interpret locations should probably be designed to
ignore those that it doesn't understand, as more types of locations could
be recorded in the future.